The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include: microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, stormwater systems, agricultural livestock operations, or wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations; urban stormwater runoff; and septic systems; radioactive contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, color or odor of drinking water, please contact our business office.

For more information about contaminants and potential health effects, call the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Important Health Information

Some people may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with anticoagulants; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Where Does Grand Prairie Water Come From?

Grand Prairie’s drinking water is obtained from both surface and ground water sources and has maintained its “Superior” water quality rating. Grand Prairie surface water supplies are purchased from the Trinity Aquifer, Trinity River, and lakes Grapevine, Lewisville, Ray Hubbard, Ray Roberts and Tawakoni. Fort Worth’s drinking water sources include: lakes Benbrook, Bridgeport, Eagle Mountain, and Worth, and the Cedar Creek and Richland-Chambers reservoirs. Grand Prairie uses up to 10 ground water wells, mainly during the summer to meet demand. The wells have an average depth of 2,000 feet and are pumped from the Trinity Aquifer.

Source Water Assessment

The TCEQ completed a source water assessment and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. The susceptibility of our purchase water sources is not included in this assessment. For more information on source water assessment and protection efforts, please contact us at (972) 237-8055.

Arsenic in Water

While your drinking water meets U.S. EPA’s standard for arsenic, it does contain low levels of arsenic. U.S. EPA’s standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. U.S. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.
COMON QUESTIONS ABOUT YOUR WATER

What is that black stain in my sink? Manganese, a harmless chemical, is colorless when dissolved in water. When it comes in contact with air, it turns black and adheres to the surface of your sink. You can clean these stains with a household cleanser or a special stain remover.

Why is my water milky white? Many times this is caused by air dissolved in the water. Fill a glass and let it sit on your counter. See if the cloudiness disappears after a few minutes.

Are there white particles in my water? What are they? Get some of the white material and put it in a glass container. Add some vinegar. If the white particles dissolve, they are most likely harmless calcium compounds formed from the hardiness in your water. If the particles do not dissolve, and they float, they are probably non-toxic parts of your water heater’s drip tube. Have your water heater serviced.

Why is my water milky white? Many times this is caused by air dissolved in the water. Fill a glass and let it sit on your counter. See if the cloudiness disappears after a few minutes.

REVIEWING TABLE INFORMATION

All drinking water testing results are well below those established by the EPA to ensure that the water coming from your tap is safe to drink. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at (800) 426-4791. Contaminants may be found in drinking water that can cause taste, color or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, color or odor of drinking water, please contact the Environmental Services Department at (972) 237-8055.

DEFINITIONS

AL (Action Level) The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level) The highest level of a contaminant allowed in drinking water. MCLs are set as close as possible to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRLD (Maximum Residual Disinfectant Level) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRLDG (Maximum Residual Disinfectant Level Goal) The level of drinking water disinfectant below which is no known or expected risk to health. MRLDGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

mm/year (milli-Roentgen equivalent man per year) A measurement of radioactivity.

ppb (parts per billion) One part substance per billion parts water (or microliters per gallon).

pCi/L (picocuries per liter) A measure of radioactivity.

NA Not applicable.

The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that a water system must follow.

The highest level of a contaminant allowed in drinking water. MCLs are set as close as possible to the MCLGs as feasible using the best available treatment technology.

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

The level of drinking water disinfectant below which is no known or expected risk to health. MRLDGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that a water system must follow.

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

The MCL for beta particles is 4 mrem/year. U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that a water system must follow.

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

The level of drinking water disinfectant below which is no known or expected risk to health. MRLDGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that a water system must follow.

The level of drinking water disinfectant below which is no known or expected risk to health. MRLDGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.